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ABSTRACT 

Let E/F be a quadra t i c  ex tens ion  of n u m b e r  fields, G the  group GL(3,  E)  

regarded as an  algebraic group over F and  U a quasi-spli t  un i t a ry  group in 

three  variables. Let  also 6 be a generic charac ter  of a max ima l  un ipo ten t  

subgroup  N of G. We derive an explicit  expression for the  integral  

//Kcont(u,n)duO(n)dn 

where  Kcont is the  cont inuous  par t  of the  kernel a t t ached  to a s m o o t h  

funct ion of compac t  suppor t  on G(A). In par t icular ,  we prove t h a t  this  

express ion is absolute ly  convergent .  T h e  resul t  can be used to show tha t  

a cuspidal  represen ta t ion  of G conta ins  a vector  ~ such  t ha t  f ¢(u)du y£ 0 
if and  only if it is a base change from a representa t ion  of GL(3,  F) .  

1. I n t r o d u c t i o n  

Let E/F be a quadratic extension of number fields. We denote by a or z ~-+ ~ the 

Galois conjugation and by x* the conjugate transpose of a matr ix  with entries 

in E. Let G be the group GL(n, E)  regarded as an algebraic group over E and 

S C G(E) the variety of invertible Hermit ian matrices: 

(1) S = {s E G(E):  s* = s}. 
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The group G(E) operates on S by 

(g, s) ~-* g*sg. 

If v is a finite place of E, we let R.  be the ring of integers in E .  and set K~ = 

GL(n, R~). If v is a real place, we let Kv be the orthogonal group O(n, JR); if v 

is a complex place, we let K~ be the unitary group U(n, C). We set K = I-[ Kv. 

The notation Ilgll has the usual meaning of a norm function on the group G(EA). 

We let 

(2) G 1 = {g E G(EA): I det(g)l = 1}. 

In general, we follow the notations of [A1] and [A2]. 

Suppose that • is a smooth function of compact support on S(Fa). We will 

only consider the case of a decomposable function 

(3) = 1-[ 
V 

where, for almost all finite places v, the function ~P, is the characteristic function, 

of Sv cl K~ if v is an inert place under the place u of E,  and of S. n (K= 1 × K~ 2 ) if 

v splits into ul,  u2. Note that  ¢ is the restriction to S(FA) of a smooth function 

of compact support on G(E•). We set 

(4) tc ,(g)= 
~ES(F) 

LEMMA 1.1: The sum (4) converges absolutely (and the resulting function is 

invariant on the left under G(E)). Furthermore, there is c > 0 and N > 0 such 

that 

Ig,(g)l <_ cll ll N. 

Finally, there is a finite set T of F x and a finite subset X of S(F) such that 

• # 0 

implies det~ E TNE/F(E ×) and ~ belongs to the orbit under G(E) of some 

element of X.  

Proof: Since • has compact support, for g in a compact set, the support of the 

sum is finite. This proves the first assertion. We pass to the second assertion. 
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Recall ~ is the restriction of a smooth function of compact support f on the 

group G(EA). It is well known that,  for suitable c and N, 

< cllyll 
~ea(E) 

Since 

IK¢(g)l-< E If(g*Tg)l 
76G(E) 

the conclusion follows. 

For the third assertion, we remark that  '~(g*~g) # 0 implies that there is a 

finite set X of places such that for all v ~ X the product det gvg, det ~ is a unit 

in E~. Thus det ~ is a norm at places not in X. Since the only invariant of 

Hermitian matrices at a finite place is the class of the determinant modulo the 

group of norms, the class of ~ is uniquely determined at all places not in X and 

our assertion follows. | 

Our long term goal is to define the projection K~,c,sp of a function K¢ on the 

space of cusp-forms and to identify the projection space with the space of cusp 

forms on GL(n, E) which are base change of cusp-forms on GL(n, F).  In more 

detail, it is easily seen that if a cuspidal representation 7r contains a form ¢ whose 

integral against a function K¢ is non-zero, then there exists a unitary group U 

and a form ¢ in the space of ~r such that 

f ¢(u)du # O. (5) 
Ju (F)\U(FA) 

We say then that n is distinguished with respect to U. The integral defines then a 

non-zero linear form on the space of ~r which invariant under the group U(FA). At 

a place v of F which splits into vl and v2 in E,  the groups GL(n, Evl ), GL(n, Ev2) 

are isomorphic to GL(n,  F,)  and U. can be identified with the twisted diagonal 

subgroup {(g,t g- l )}  in the product. Thus the existence of the linear form implies 

that the representations g ~ 7r. 1 (g) and g ~ ~rv 2 (tg-1) are contragredient to one 

another, or, equivalently, that  ~r,l _~ r~ 2. If, on the contrary, v if finite and inert 

in E under the place u of E and 7r~ is unramified, then ~r~ is invariant under 

Galois conjugation. It follows that the representations g ~ ~r(g) and g ~ r(~) 

are equivalent at almost all places and thus are equivalent. Hence ~r must be a 

quadratic base change by [AC]. Our ultimate goal is to prove that  conversely a 

quadratic base change is distinguished with respect to some unitary group. Of 
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course for n -- 1, a distinguished representation is an id~le-class character which 

is trivial on the group of elements of norm 1. Such a character is a quadratic 

base change, that  is, of the from z ~-~ X(z~), where X is an idhle-class character of 

F. The problem at hand takes its origin in the reference [HLR]. In particular the 

above argument on the Galois invariance of a distinguished representation can 

be found there. The dual case, where roughly speaking the role of the groups U 

and GL(n, F)  are exchanged, is discussed at length in [yF1]. 

In order to prove the conjecture, one must obtain an explicit expression for the 

difference 

difficulty is to establish that  the final formula is a b s o l u t e l y  Part  of the 

c o n v e r g e n t .  

For the time being n is arbitrary (however, for an even n we would have to 

introduce the group of unitary similitudes). Our plan of attack is as follows. 

We will fix a finite subset X of S(F)  and consider only functions ~) such that 

(~(g*~g) ¢ 0 implies ~ is in the orbit of some point of X under G(E). Let U¢ 

be the unitary group which fixes ~ E X. Then there are compactly supported 

functions f~, ~ E X, on GL(n, EA) such that 

(6)  

and 

f 
(~(g*~g) = ] f~(ug)du 

Ju ¢(F)\U¢(PA) 

= 0, 

if s is not in the orbit under G(EA) of a point of X. If we set, as usual, 

(7) Kf(x'Y) "~- E f(x-l~Y) 
~/EGL(n,E) 

then we see that 

K (g) = Z / u  K l¢ (u, g)du. 
~cx ~(F)\U¢(FA) 

In fact, we will choose an id~le-class character w of E which is itself a quadratic 

base change. We will set: 

(8) Ko,,~(g)= JEll,/E × w(z)K¢(gz)d×z : JE~, f ' "  w(z) E O(g*zo'g)d ×z, 
/E× aES(F) 
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(9) 

Then 

(10) 

CONTINUOUS SPECTRUM 

K/,~,(x, y) = f w(z) E f(x-l"~zY)d× z. 

K¢,,~(g) = E / u  Ky,,~(u, g)du. 
¢(F)kU~(Fa) 

Our next step will be to consider the spectral expansion of each kernel 

Kf¢,,~(x, y) = E KI¢,×(x' Y)' 
X 

the sum over all cuspidal data  )/. We recall that if P = MN is a parabolic 

subgroup of G then we write M(EA) --- ApM 1 where Ap is the split component 

of M and M 1 the group of m e M(EA) such that I#(m)l = 1 for every rational 

character # of M. Suppose ~r is a cuspidal automorphic representation of M 1. 

Whenever convenient we will identify such a representation to a representation 

of M(EA) trivial on Ap. Two triples (P, M, 7r) and (P', M', 7r') are equivalent if 

there is w E G(E) such that w conjugates M to M t and transforms r into 7r ~. A 

cuspidal datum is an equivalence class for this relation. At this point we would 

like to set 

(11) K¢'×(g) = ~ /U,(F)\U~(F,) K f~'x(u' g)du' 

so as to have 

X 

The cuspidal part of K¢,,, is then defined as the sum of the K~,×, where ~( is a 

cuspidal representation of G 1. If X is not a cuspidal representation of G 1, then 

one wants to obtain an explicit expression for K¢,×(g) of roughly the following 

form.* 

Here the second sum is over all standard parabolic subgroups P = MN; for each 

such P,  dTr denotes a measure supported by the representations of M(EA) whose 

restriction to M 1 are in the discrete part of the spectrum determined by X. The 

linear form 

on the space of the representation Ip(~r) induced by 7r is invariant under U~. 

Thus the representations induced by those representations 7r which support the 
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measure d r  should be invariant under the Galois group. The inner sum is over an 

orthonormal basis of the induced representation and E(g, 4, r) is an Eisenstein 

series. 

In this paper, we will consider the case n = 3. Furthermore, we will let 0 be a 

generic character of the maximal unipotent subgroup No of G and compute only 

the difference 

(12) /No(V)\No(FA)K¢(n)O(n)dn- /No(V)\No(FA)K¢,cusp(n)O(n)dn. 

Our aim will be to obtain for such an expression a formula of roughly the following 

form: 

(13) E E f E r/f E(n, ,rlO(n)dndr. 
P ¢ 

As before, we sum over all standard parabolic subgroups P = MN. For a given 

( and a given P,  the integral is with respect to a certain measure on the set of 

cuspiclal  automorphic representations r of M(EA). As before, ~b ~ --(~b, ~r) is a 

certain linear form on the induced representation Iv(r) which is invariant under 

U~ and the representations induced by those r which support  the measure d r  

are actually invariant under Galois conjugation. When P is of type (2, 1) then 

M - GL(2) x GL(1) and r = 7rl ®r2  where r l  and r2 are invariant under Galois 

conjugation and thus quadratic base change. When P is of type (1, 1, 1) then 

r = r l  @ r2 ® r3 and either each r i  is a quadratic base change or two of the 

characters are exchanged by Galois conjugation and the third one is a quadratic 

base change. Of course, the two cases are not exclusive of one another. 

An important  feature of this formula is its a b s o l u t e  c o n v e r g e n c e .  The exact 

nature of the linear form E is in a sense irrelevant. Nonetheless, it is worth noting 

that  in the case of a parabolic subgroup of type (2, 1) the formula for the linear 

form E is based on the fact that  the inducing representation r l  is distinguished for 

some form of the unitary group; even if we restrict our attention to the case where 

Ue is quasi-split, all unitary subgroups of the group GL(2) appear  implicitly in 

the formula for E. 

Together with the ongoing work of Ye, the above formula will be enough to 

establish the conjecture for n = 3 (under some restrictions on the quadratic ex- 

tension). See [JY] and [Y]. The case n = 2 was treated in [Y1], mainly from 

a formal point of view, in the sense that  some of the analysis was insufficient. 
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The techniques of the present paper can be used to make the discussion rigor- 

ous. Similarly in [J1], [J2], it was implicitly assumed that  the ground field was 

Q and the extension E an imaginary extension of Q. The difficulty was there 

are infinitely many id~le-class characters which are unramified at all places; this 

introduces infinite sums, the convergence of which has to be established. The 

estimates sketched in the third section can be used to make the discussion com- 

plete. We hope the present paper does not contain essential errors. Since the 

general case is very difficult and would entail the use of more elaborate technics 

as in the work of Arthur, we feel it is reasonable to limit the scope of this paper 

to the case n = 3. 

A similar analysis is a t tempted  in [yF2] and [yF3] for different, more elaborate, 

situations. The reference [yF2] treats the "dual case" in the context of GL(n).  

While the paper is suggestive, it contains a very large number of serious errors 

and omissions. The reference [yF3] is also flawed to a substantial extent. 

The material is arranged as follows. We review some properties of the trunca- 

tion operator in Section 2. In particular, we explain how the truncation operator 

is used to prove the formula above. In Section 3, we show tha t  the Eisenstein 

series induced from the parabolic subgroup of type (1, 1, 1) can be majorized on 

the "imaginary plane." The result, Proposition 3.5, can be taken for granted 

at first reading. The proof uses standard techniques. Section 4 is an auxiliary 

Section where we estimate two infinite sums (Lemma 4.1 and 4.2). Again the 

result, which is elementary anyway, can be taken for granted at first reading. 

The result is used in Section 5: we study Arthur 's  second formula for the trun- 

cation of an Eisenstein series (induced from cusp forms). Replacing each term 

by its absolute value, we obtain a series of positive terms, in a suitable domain; 

we estimate the series of positive terms (Proposition 5.1) and show that  it is 

integrable over the quasi-split unitary group. The crucial section is Section 6: we 

consider Arthur 's  second formula for a truncated Eisenstein series induced from 

a parabolic P and compute the integral of the truncated Eisenstein series over 

the quasi-split unitary group U. The integral can be written as a sum of terms, 

indexed by the double cosets of U\G/Q, where Q is any associate of P. Because 

of the cuspidality of the datum, only certain double cosets can contribute a non- 

zero term. The computations in this Section are purely formal in case n > 3, 

but in case n = 3, they are justified by the estimates of Section 5. See the con- 

cluding remark of Section 6 for attributions. Finally, formulas for the integral 
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of a truncated Eisenstein series are obtained in Section 7. They are really the 

core of this paper. The most difficult case is the case of the minimal parabolic 

subgroup. The relevant formula is obtained in Proposition 7.3. The formula is 

reminiscent of Arthur-Langlands formula for the scalar product of two truncated 

Eisenstein series. Finally formula (13) is obtained in Section 8. A subtle feature 

of this formula is the cancellation of the singularities. The linear form ~(., 7r) is 

a meromorphic function of ~r; it may have a pole on a line which intersects the 

range of integration. However the Eisenstein series has a zero on such a line and 

the product which appears in (13) is actually holomorphic on the range of inte- 

gration. A similar cancellation appears in the work of Ye ([Y1]) and reappears 

in the references [yF]. Also, we prove the formula only when X is reduced to one 

point ~ such that the group Ue is quasi-split and the corresponding function fe 

is a convolution product of two K-finite functions and for one specific quasi-split 

unitary group. This will suffice for the application we have in mind. 

2. A r e v i e w  of  t r u n c a t i o n  

For simplicity we fix ~ C S(F) so that X -- {~}; we assume the group U = U~ 

is quasi-split. We also fix the character w; we assume it is a base change and, as 

usual, we assume that it is trivial on the split component of GL(1). We write f 

for fe. We assume that f is K-finite. We write KG for Kf,~. Instead of K~ we 

simply consider 

U(F)\U(FA) KG(U, g)du. 

For the convenience of the reader, we extract some simple facts from the work of 

Arthur. We follow his notations (A trace formula for reductive groups I and II, 

[A1], [A2]). 

PROPOSITION 2.1: Suppose ~o is a compact set of G 1. Then, i f T  is sufficiently 

regular, for all x C ~o and all y in G(EA): 

KG(X, y) = A T KG(x, y), 

where A r K c ( x ,  y) denotes truncation with respect to the second variable; simi- 

larly, 

Ko,~(z, y) = A~Kc,x(z, U), 
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for all x E ~2o, all y E G(EA) and all cuspidal data X. Furthermore, given a Siegel 

set ® in G 1 and an integer N, there is a c such that for x E f~o and y E ®, 

Proo~ 

IK (x,y)l cllYll -N  
x 

Recall the definition of the truncation operator: 

A T e ( y )  = Z ( - - 1 )  dim(A/Z) ~ Tp(H(6y) - T) [ ¢(n6y)dn. 
P P(E)\G(E) JN(F)\N(A) 

Thus 

~-~(--l )dim(A/Z) 
P 

Now 

A KG(x, y) = 

~-p(H(Sy) - T)/N(F)\N(A) KC(x, nSy)dn. 
66P(E)\G(E) 

Kc(x, ny)dn = Kp('yx, y). 
76P(E)\G(E) 

Next, if Kp(TX, my) ~ 0 for some m E M 1, then we have 

nmy E ~xf~. 

for some n E N(EA); here f~ is a fixed compact set of G 1, depending only on the 

support of f .  It follows that there is To such that 

-?p(H(Tx) - H(y) - To) = 1. 

The parameter To depend only on the support of f ([A2], p. 101). Thus we see 

that given (x, y) 

Ka(x,  nmy)dn = 0, 

for all m E M 1, unless there is "y E G(F) such that 

?p(H('yx) - H(y) - To) = 1. 

By Lemma 2.3 of [A2], the same assertion is true for each kernel K x. 

Now let us look at the truncation and the term corresponding to P for the 

kernel KG (or one of the kernels Kx). Fix x in the compact set g/0 and y in G1; 

suppose that 

Z "~p(g(6y) - T) / KG(X, n6y)dn # O. 
6 J 
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Recall the sum is actually finite. Thus there is 5 such that 

(14) ¢ - p ( H ( S y )  - T )  = 1 

and 

K(x, n~y)dn ~ O. 

The second relation, in turn, implies that 

~ p ( g ( T x )  - H ( S y )  - To)  = 1. 

Now ([All p. 936) there is a c such that, for all w • /~p C /~0: 

w(H(Tx)) <_ c(1 + log Ilxll). 

Since x is in the compact set f~o, we see that 

~(H(Tx)  < el 

for some constant cl. It follows that 

(15) w(H(Sy)) < cl - w(To). 

If T is sufficiently large, the conditions (14) and (15) on H(6y) are not compatible. 

Hence, the term corresponding to P ~ G is 0, if T is sufficiently regular. The 

first assertion of the proposition follows. 

To continue, we recall the explicit expression for K×: 

fn  ~ E(x, Ip(~, f )¢ ) .E(y ,  ¢)d~. (16) gx(x,y )-- E n ( A p ) - I  
p O(M) ¢~]3p(Tf) X 

Given X and Y in the enveloping algebra at infinity, we have also a majorization 

of 

Z (Ap)-I f,o(M) 
)~ P 

by 

E Rx(X)Ry(Y)E(x, Ip(~,f)¢)).E(y,¢) dTr 

(17) I[ X * f * Yllro" IlxJl N°" [lyll N°, 

where [].[]ro is a certain semi-norm and No an appropriate integer. Thus given 

Y, we have a for t ior i  a majorization 

IRu(Y)K~(x,Y)I <- IIf * Yll.o" Ilxll N°" Ilyll N°. 
x 
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This implies that we can truncate the series KG = ~× K x term-wise in the 

second variable: 

A KG(x,y) = 
x 

We have also, for each integer N, a majorization: 

< .llxllNollyll -N' 

valid for all x E G 1 and all y in a Siegel set. Afortiori ,  we obtain an estimate: 

E IATKx(x'Y)I <- clfxlIN°" IlYlI-N 
x 

for all x and all y in a Siegel set. If we take x in a compact set and use the first 

part of the proposition, we obtain the second part of the proposition. | 

Exchanging the role of the two variables, we see that for y in a compact set, we 

can integrate the series KG = ~ K× with respect to the first variable to obtain: 

PROPOSITION 2.2: 

/U(F)\U(A) KG(u,y)du---- E / K×(u,Y) du" 
x 

Moreover, if y is in a compact set, there is C > 0 such that 

/IKc(u,y)ldu<_ C, E/IK×(u'y)'du<- C. 
x 

We also remark that if we set 

Kcusp(X, y) -- E K x ( x '  y )  

where the sum is over all cuspidal automorphic representations of G 1, then 

f K~.~p(u, x)du 

may be viewed as the cuspidal component of 

f KG(u,x)du, x 

in the following sense: 
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PROPOSITION 2.3: / r e  is any cusp form, then 

Isr. J. Math .  

Kc(u, x)¢(x)dxdu = / K¢.sp(U, x)¢(x)dxdu. 

Proof'. Indeed, for fixed u, it follows from the majorization of the Proposition 

2.2 that 

/ Ka(u,x)¢(x)dx = E / Kx(u,x)¢(x)dx. 
x 

For a given )/, the integral is 0 unless ); is a cuspidal representation of G 1. Thus 

/ KG(u,x)¢(x)dx= / Kcusp(u,x)¢(x)dx. 

for any u. Thus it suffices to show that the double integrals of K c  and Kcu~p 

converge absolutely. This is clear for Kcusp because it is bounded. For KG this 

will follow from the following assertion: 

PROPOSITION 2.4: There is c > 0 and N such that for x E G 1 

/ ,KG(u,x),du (_ c,,xH N, / KG(u,x)du ~_ c,,x,, N. 

Proo~ The second assertion follows from the first. We prove the first assertion. 

There is a function of compact support (I) on S(A) such that 

f = f S(uzg)du (z)e ×z. 
Thus 

S Z l (x'z 'x)l '×z" 
aES(F) 

Let ¢ be a smooth function of compact support on G whose restriction to S is 

(I). As is well known 

f I ¢l(x-Iz~w)~×z < cllyll N. 
Tee (F)  

This implies afort ior i  our assertion. | 

Let CF be an additive character of FA, non-trivial but trivial on F.  We set as 

usual 

CE(z) = ¢~ (z  + ~) 

and define a character 0 of the unipotent radical No of Pc by 

(19) O(n)=¢E(En,,,+O. 
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Our goal is to compute the integral 

U(F)\U(FA)XNo(E)\No(EA) KG(U, n)-8(n)dudn. 

It follows from Proposition 2.2 that we can integrate term-wise to obtain 

/ KG(u,n)-Odudn = ~" / K×(u,n)8(n)dudn. 
x 

Now for x in a Siegel set and any N, we have a majorization 

1-1 ~ ATE(x, ](p(Tr, f )¢ ) ) .E (y ,  ¢) dTr (20) Zp n(Ap)-' o(M  

< cllxlI-N.IlYll N' 

for suitable c, N1. It follows from Proposition 2.3 that if T is sufficiently regular 

then for any X 

(21) J Kx(u, n )-~ ( n ) dndu 

P CEtSp(,r) x 

Now the integral f E(n, ¢)O(n)dn factors through an integral 

N(F)f"IM(F)\N(FA)NM(FA) ~(nl)O(nl)dnl. 

The intersection NNM is a maximal unipotent subgroup in M and the restriction 

of 0 to N N M is a generic character of that  group. The restriction of 7r to M 1 is 

in the discrete spectrum of M 1 and this integral is zero unless the representation 

is cuspidal, because the residual spectrum is degenerate ([MW]), that  is, has no 

Whittaker model; equivalently, the triple (P, M, 7riM 1) is in the class of X. We 

set then 

N E(n, ¢)O(n)dn. (22) w ( ¢ , ~ )  = o(E)\r%(E,) 

Thus we have proved that: 

PROPOSITION 2.5: 

KG(u, n)-O(n)dudn = / K x (u, n)'O(n)dudn. 
x 
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If T is sufficiently regular, for all X, 

K x (u, n)-O(n)dndu 

f( B~p(~ ( fATE(u ' I (P(r ' f )C))du)  "W(Gr) dr" Zp n (Ap) - I  P'M'rcIM1)EX eE )× 

Our task will be to obtain an explicit expression for the right hand side by letting 

T tend to infinity. We stress the absolute convergence of the above expression. 

More precisely, the following sum is finite: 

E ~ - ~ n ( A p ) - i  

x P 

(23) f(p,M,.lM1)e× ¢e~s~(.), (f ATE(u,I(p(Tr, f)¢))du).W(¢,Tr) dTr. 
In what follows, we will use the following notations. We consider a standard 

parabolic subgroup P = MN in GL(3). The Lie-algebra of Ap is denoted by 

ap. In particular, if P = G then M is the center Z of the group G. We have a 

canonical splitting: 

ap = a Z (~ az. 

When no confusion is possible we simply write a for a Z. We consider an au- 

tomorphic cuspidal representation 7r of M 1 which we regard as an automorphic 

representation of M(EA) trivial on Ap. We assume that the central character of 

7r coincides with oa on the center of G. Suppose that ~ is a complex valued linear 

form on a, that  is, an element of a~. Then we denote by 7r¢ the representation 

of M(EA) defined by 

he(m) = 7r(ml)e (¢'H(m)), 

where m = mla with m 1 E M 1, a E Ap and H(m) is the logarithm of a. Let "HOp 

be the space of smooth K-finite functions ¢ on G(Ea) such that  

¢(namlk) = ¢(mlk)  

and the function m 1 ~-* ¢(mlk)  belongs to the space of the automorphic repre- 

sentation 7r. We recall that  because of the multiplicity one theorem, the space 
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is uniquely determined by the class of ~. For ¢ C 7_/0 we define the Eisenstein 

series by analytic continuation of the series: 

= 

"yEP(E)\G(E) 
If Q is a standard parabolic subgroup associate to P we denote by ~(ap, aQ) 

the Weyl set. If s is in ~(ap, aQ) and w8 is a representative, we define the 

intertwining operator by 

M (s, ~r¢)¢(x)e (~¢ +pQ'H(~)) 

/NQ(Ea)nw,Np(EA)w_~I\NQ(EA ) ¢(wTlnx)e(S(+PP'H(w:lnz))dn" 

Often we write M(s, ~) for M(s, ~¢). The space 7-/° is provided with the scalar 

product 

(¢1, ¢2) = / ¢l(mlk)-~2(mlk)dm 1 dk. 
JM (E)\MI×K 

In the previous formula for instance, for a given )/, we sum over all ~r such that 

(P, M, ~r) belongs to X and then we integrate over in* for an Euclidean measure 

dlz I. We also sum over an orthonormal basis Bp( r )  of 7-/°: 

~-~n(Ap)-I ~ ~ , .  ~ ( /ATE(u , I (p (Tr ,  f)¢)) du) .W(¢,Tf)d'~l. 
P CE/3p(~) 

It will be useful to keep in mind the following elementary lemma: 

LEMMA 2.1: Let II be a unitary representation of G(EA) on a Hilbert space 7-/. 

Let 7-I ° be the space of K-finite vectors. Assume that each K-type has finite 

multiplicity. Let p and v be two linear forms on 7-[ °. Consider the expression 

where the sum is over an orthonormal basis of Tl ° and f is a smooth K-finite 

function of compact support. Then the sum does not depend on the choice of the 

orthonormal basis. Moreover, if f = fl * f~ where f l  and f2 are smooth K-finite 

functions of compact support, and f~ (g) = f2 (g- 1) then 

The proof is elementary. | 
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3. Est imates  for Eisenste in  series 

We will use estimates for Eisenstein series induced from the minimal parabolic 

subgroup of GL(3) (or GL(n)) on the imaginary plane (or hyperplane). We recall 

that in general such estimates are no t  available. The existence of these estimates 

in the case at hand is a consequence of the fact that we can find zero-free regions 

for the relevant L-functions. 

We fix some notations. Let E be a number field, Gm its multiplicative group, 

regarded as an algebraic group. Thus G~ is the group of id61es of norm 1. We 

let Am be the split component of Gin. This is the group of id~les z such that 

z. = 1 for v finite, zv = a > 0 for v infinite, where a does not depend on v. Thus 

A,~ is isomorphic to the group R +. We write in the usual way Gm(EA) = E~ as 

the product of G 1 and A,~. 

We let I-I be the group of id~le-class characters of module 1 trivial on Am. Let 

Uv be the maximal compact subgroup of E~ and U the product of the groups 

U.. We will denote by rio the group of characters X E 12 which are trivial on U. 

Let v~, 0 < i < r, be the infinite places. For ~( E Ho we have 

= 

The imaginary numbers si lie in the hyperplane 

Z ni8 i ~- O, 
i 

where n~ is the degree of E. ,  on ~. They form a lattice, that is, a discrete 

subgroup of rank r - 1 in this hyperplane. 

In what follows Co(X) will denote a function on Ho of the form 

(24) C0(X) = c H ( 1  + s~sT) m' 
i 

with c > 0, m~ > 0. We will introduce furthermore functions on H of the 

following form. The functions depend only on the restriction of the character to 

the subgroup 

v 

which has finite index in the id~le group. We choose a set of representative for 

II/IIo. For each such representative ~(o, we choose a function Cxo of type (24) 

on Ho and then set 

(25) C(x) = C,~o (XXo 1) 
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if X has the same restriction as X0 to U. Note that there is no uniformity in our 

choice of Cxo. 

We will also consider integers valued functions re(X) with the property that  

the function depends only on the restriction of X to U. 

PROPOSITION 3.1: There are functions Ci(X), i = 1, 2 and mi(x) ,  i = 1, 2 of the 

above types such that for 

S = ~ + i t ,  [CT[ < C I ( X ) - I ( 1  + t2) - m ' ( x ) ,  

we have L(sL(S'+ X)X ) _< C2(X)(1 + t2) m2(×) 

Moreover, every derivative of the above ratio verifies a similar majorization, with 

possibly different functions. 

SKETCH OF PROOF. The last assertion follows from the first and the integral 

representation of a derivative via Cauchy formula. We begin the proof of the first 

assertion. We set 

L ° ° ( s ' x ) =  I ]  L(s'xv)" 
v finite 

Given a vertical strip of finite width, there are functions C(X) and re(X) such 

that for all X, on the strip 

IL~(s, x)l < C(x)(1 + s-~) re(x). 

Indeed, if ~s is sufficiently large, then the product is absolutely convergent hence 

bounded in a vertical strip. To find estimates for small ~s  we use the functional 

equation and the Phragmen-Lindelhff principle. Using Cauchy formula, we find 

similar estimates for the derivatives of L°°(s, X) on a vertical strip. Next, we use 

the standard trigonometric identity to prove that  

[L°°(s, 1)3LC~(s,x)4L°°(s, x2)[ ~_ 1 

for Ns _> 0. This inequality, together with the upper estimates for the derivatives 

can be used to find (coarse) zero-free regions and lower estimates of the following 

form: for 

(26) s = a + it, la - If <_ CI (X)- I ( I  + t2) -ml(x) 

one has 

(27) In ( s, X)I >-- C2(X)-1(1 + t2) 
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Of course, the case of a quadratic character must be treated separately; however, 

there are only finitely many such characters with a given restriction to U and 

much better estimates are known for characters of finite order. Finally, to prove 

the proposition one uses Stirling formula to majorize the ratio of the factors at 

infinity in the proposition. For more details, see for instance ILl, p. 313 and 

p. 334. I 

To explain our notations, we remark the following: suppose f is a smooth 

function of compact support on the id~le group which is the product, over all 

places, of U~-finite functions. Then, for C(X) and m(x ) of the above type we 

have: 

C(x)(1 + s~) re(x) [ f ( z )x(z ) l z lSd×z < + ~ .  
X61I J E 

Indeed, by hypothesis, the integral is zero unless the restriction of X to U takes on 

finitely many possible values. Thus the assertion follows from abelian harmonic 

analysis. 

To continue, we consider an n-tuple of characters X = (X1, X2, . . . ,  Xn), each 

trivial on Am. We set w = YIx~. Let Po = MoNo be the group of upper 

triangular matrices, Mo being the group of diagonal matrices. We let A be the 

split component of Mo. Then X defines a character of M~. If r is any permutation 

of X then we consider the space 7-/0°(~) of K-finite functions ¢ on G(EA) such 

that 

(28) ¢(namk) = ¢(k)~r(m) 

for n E N0(EA), k E K,  a 6 A, and m E M01. If ff is in a~ we define the Eisenstein 

series by analytic continuation of the series 

(29) E(x, ¢, r¢) = E ¢(~ix)e(H(6x)'"°+¢)" 
66Po(F)\G(F) 

Often we drop 7r from the notation if this does not create confusion. We also 

denote by Io(7r¢) the representation of G(EA) induced by (7r¢). 
Note that the restriction of this representation to K depends only on the 

restriction of the characters Xj to U. It space can be viewed as a subspace of 

L2(K). We have the intertwining operators M(s, ~r¢) for s E ~(a).  They have no 

singularity on ia*. 

We introduce functions of the form 

(30) c(x)  = 1-I l-I 
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and integers m~(x) depending only on the restriction of the characters X~ to U. 

We fix a K-type 0, that is, a finite set of classes of irreducible representations 

of K. We denote by[]M(s, Tr()][o the norm of the intertwining operator in the 

{?-component of I0(Ir¢). Note that this space is 0 unless the restriction of the 

characters Xj to U belong to a finite set depending on 0. 

PROPOSITION 3.2: There are functions C d x ) ,  i = 1, 2, and mi(x), i = 1, 2, with 

the following property: let ~ be the open set defined by 

(31) ~ CI(X)-I(1 -1- ImaV(()2) -m'(x), 

for all a E Ao. Then for ( C ~ we have 

I]M(s, 7r¢)[10 < C2(X)(1 + 11¢112) "~(x). 

Proof." We write M as the product of the normalized intertwining operator and 

the factor 

H L(aV(() '  XiX; 1)/L(av(ff) + 1, XiX;1). 

The product is over all roots a > 0 such that wa < 0 and ( i , j ) , i  < j, is the pair 

of integers corresponding to a. The normalized intertwining operator is easily 

majorized. The ratio of L-factors is majorized by the previous proposition. Our 

assertion follows. | 

As before, we obtain similar estimates for any derivative of the intertwining 

operator. 

PROPOSITION 3.3: Fix a K-type 0. Then there exists Ci(X) and mi(x) with the 

following property: consider the open set f~ defined by (31); then for ~ in fl and 

¢ in the {?-component of the induced representation 

(32) / l A T E ( x ,  ¢, 7r()l 2 dx 

_< [j¢112(1 + log(l[Tjl)),~(X)em3(x)llTIIc2(x)(1 + ]](][2)m,(×). 

Proof'. This follows from the scalar product formula ([A3]) and the estimates of 

the intertwining operator and its derivatives. | 

PROPOSITION 3.4: Let f be a smooth function of compact support on G(EA) 

which is K-finite. Then there are functions Cdx ) and m~(x) such that on the 

open set ~ defined by (31) we have for all x C G 1 

(33) IE(x, Io(~r(,f)C,~r() I < IlCllC2(x)(1 + Ilfll=)m2(X)llxll m3(~), 
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Proof: From [A1], page 936, we recall there is a constant  c such tha t  for any 

w C Z~o and "y • G(E) we have 

~(H(~x)) < c(1 + log IIxll). 

In part icular,  suppose f~o is a compact  set of G 1. Then  if T is so chosen tha t  

w(T) > c(1 + log IIxlr) 

for all w and all x C ~o, we have 

ATe(z) = ¢(x) 

for all functions ¢ and all x C flo. Choose T1 sufficiently regular such tha t  

~(T1) > c 

for all ~ • /~o and let c2 be its norm. Let us set 

T ---- T1 sup(1 + log Ilxll). 
rio 

Then  T satisfies the above condition. Moreover 

IITI] = c2 sup(1 + log I]xll), 
rio 

Let f~2 be the support  of f and f i l  be a compact  subset of G ~. Let us apply the 

previous construct ion to the compact  set f~o = f~1~22. Wi th  the above T we have 

now 

IITII _< C3 sup(1 q- log Ilxll) 

and 

(34) f ATE(xy, 0, ~r~)f(y)dy 

for all x E ~21. Set 

= / E(xy, ¢, ~¢)f(y)dy = E(x, Io(~, f)¢, ~ )  

KAx, y)= f Z /(x-lz~Y)~(z) d×z 
~6a(E) 

Then  the first integral in (34) is also 

(35) f ATE(y, ~, ~rc)K/(x, y)dy. 
J 
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Since 

Igf(x,y)l < al[xll N 

we find this is bounded by a constant, times a power of IIx[I, t imes the L 2 norm 

of the truncated Eisenstein series. Taking in account the previous proposition 

and the upper estimate for the norm of T, we see that  we obtain a majorization 

of (34) by 

C(X)(1 + IICl[2)m'(X)llOIl(1 ÷ sup log pIx[I) m~<x) sup I[xll m~(x), 

where the supremun is over the compact set ftl  ~ x. Let f~3 be a compact 

neighborhood of the origin in G 1. Fix x0 C G 1 and consider the compact set 

~21 = x0~t3. Then the supremun of ]lx]l over gtl is bounded by a constant times 

I]x01[. Applying the above majorization for x0 and ~21 we obtain our result. II 

Finally, we obtain the required majorization: 

PROPOSITION 3.5: Let f be a smooth function of compact support which is also 

K- f in i te .  Let D be a differential operator with constant coefficients on a. Then 

there are functions C(X) and mi(x)  such that if  rr is a permutation of X, then, 

for all ¢, and all ¢ E ia* : 

(36) IDE(x, Io(Tr<,f)O,~rd[ <_ C(X)(1 + 1l¢ll2)m'<×)llxllm < )ll¢ll. 

4. E s t i m a t e s  for an inf in i te  s er i e s  

In order to compute formally the integral of a truncated Eisenstein series over 

the unitary group, we will need to replace the terms in Arthur 's  second formula 

for the truncation by their absolute value and show that  the result is integrable 

over the unitary group. In this section, we estimate an infinite series. The result 

will be used in the next section to majorize the series of absolute values. 

We let F be a number field; we fix a constant Co > 0 and we consider the 

following series: 

(37) ~ II(al, a2~2, . . . ,  an~,~)11 - s ,  

where al ,  a2, ..., an are in the split component of G m =  GL(1) and 

lall ~ Clajl, for all j _> 2; 
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the sum is restricted by the condit ion 

(38) II(a~,a2~2,...,an~n)ll ~ R. 

We recall tha t  the split component  of GL(1) is the set of id~les z such tha t  z.  = 1 

for v finite and z.  = a, for v infinite, where a > 0 does not depend on v. For a 

primitive vector x we denote by [Ix[[ the product  

where 

if v is finite, 

if v is real and 

if v is complex. 

LEMMA 4.1: 

v 

Ilxvll = sup Ixv,~lv 

IIx~ll = ~ / ~ - x  ~ 

i 

The previous sum converges for s > n and is then bounded by 

C(s) lala2. . .an[  -1 

where the Constant C(s) > 0 is a locally bounded function of s, which depends 

on R and Co. For F = Q we can take C(s) = Cx(s)R n-s where C1(8 ) does not 

depend on R. 

Proof." It  suffices to prove the result when F = Q. Indeed, if F has degree m 

over Q we choose a basis Tj, 1 <_ j < m, of F over Q. For convenience, we may  

assume ~-1 = 1. Then every ~i has coordinate (~J). Thus the vector 

z = (al, a2~2, . . . ,  a ~ n )  

in F ~ d e t e r m i n e s  a vector 

y ( a l , o , o ,  .,O, a 2 ~ , a ~ , ,  a ~ . .  1 ~ . . . . . .  , 2~2 , ",an~n, an~n,...,an~n) 

in A ran. Fur thermore 

clllyli < ]lx]l < c2ilyli m, 
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for suitable constants cl, c2. Ignoring the constants, we see that  the original sum 

is bounded by 

Zl ly l I - "  

where the sum is restricted by the condition that  

IMI > R~/m. 

In turn, this is majorized by the sum of all terms of the form 

• , a  m . 1 2 a m - s  
]l(al, al~l,  al~2,. • , alum, a2~ 1, a2~2,... 2~2,  ' ' ,  anon, anon,' ' ' ,  n~n )H , 

such that  the norm is _> R Urn. Applying the result over Q we find our result. 

Thus we may assume F = Q. By homogeneity, we may assume al = 1. Let 

Ft be a relatively compact neighborhood of 0 of A such that  ~ ~ Q = 0. Since 

lail _< C -1 the sets a i r / a r e  relatively compact.  Let g be the n x n matr ix  with 

unit diagonal, first row 

(1, a 2 ~ , . . ,  a ~ ) ,  

the other entries being 0. Then g remains in a compact subset. Now 

(1, a2~2 . . . . .  a,~n)g -- (1, a2(~2 + w2) , . . . ,  a n ( ~  + wn)). 

It  follows that  the ratio of the norms of the vectors 

and 

(1, a2(~2 + W2), . . . ,an(~n + COn)) 

(1, a2~2, . . . ,  a ~ )  

remains in a compact set of R x . Our series is thus bounded by a constant times 

the integral 

~ _ ,  I](1, a2(~ + ~2) , . . . ,  a , (& + ~n))ll -s ® d~ ,  

where the integral is over the set of vectors such that  

I1(1, a~(~2 + ~2) ,- . - ,  an(& + ~-))11 -> elR. 

The constant cl depends only on Ft. In turn, this integral is less than the corre- 

sponding integral over A n-1 . Thus we are reduced to the problem of estimating 

the integral 

] II0, a~x~,..., a~x~)ll-" ® dxi, (39) 
J 
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taken over the set of vectors such that  

II(1,a2x2,...,anxn)ll > R. 

We have to see that  the integral is bounded by 

C(s)Rn-Sla2a3. ..a,~1-1. 

After a change of variables, we see that  we may assume ai = 1. 
We see that  our integral takes the form 

(40) fll(1.~)ll>_R II(l' x)[l-Sdx" 

We write x = xoox °° where x °° the product of the x .  for v finite. The integral 

can be writ ten as 

/ ,,(1,x°~),,-Sdx°° / ,,(l.xoo),,-Sdxoo. 

where the inner integral is for 

II(1,x~)ll _> RII(1,x~)I1-1. 

The domain of integration is contained in the union of the two following sets: 

(41) II(1, x~)ll _> RII(1,x~)I1-1, II(1,x~)ll _< R/2, 
(42) II(1,x~)ll > R/2. 

Thus we majorize our integral by the sum of the integrals over these two sets. Let 

us consider the second integral. The integral is now the product of an integral at 

infinity and an integral over the finite addles. The integral at infinity converges, 

so we are left with the task of estimating an integral of the form 

(43) ~(1,~)11>, IL(1, x°°)lt-~dx~. 

It  can be computed as 

where in the expansion of the product we keep only the terms such that  

Jv > R .  
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We obtain a larger expression by ignoring the factor 1 - p - n + 1 .  Thus we have 

majorized the integral over (42) by the product of a bounded function of s and 

E mn-l-s. 
mEN, m>R 

In turn this is less that C(s)Rn-% where C(s) does not depend on R and is 

locally bounded. 

We now majorize similarly the integral over (41). We first integrate the 

component at infinity. Using polar coordinates we obtain 

f rn-2(1 + r2)-S/2dr 

with 
r _> R[[(1,x°°)[[- lX/1-  [[(1, x°°)[[2R -2. 

Recall we are taking 
R][(1, xC~)[[ -1 > 2. 

Thus the square root is bounded below by a positive constant c and we obtain a 

larger integral by integrating over 

r _> R c l l ( 1 , x ° ° ) l l - ' .  

Furthermore, the integrand is bounded by r " -2 - s .  Thus the integral at infinity 

is bounded by a locally bounded function C(s) times 

1--. 

Thus we are left with the task of estimating the integral 

f II(1, x°°)lll-"dx°° 

taken over [](1,x°°)[] _< R/2. As before this is bounded by 

E ml_n 
re<R~2 

which, in turn, is bounded by a constant times R and we are done. | 

We will also consider sums of the form 

(44) E II(ax, a2~2,. . . ,  a,~,~) 11 ~, 
~2 ,~a, . . . ,~  E Y 
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where al,a2, . . . ,an are in the split component of GL(1) and lall > Colajl and 

the sum is restricted by the condition 

(45) ]](al,a2~2,... , a ~ ) l l  < R. 

LEMMA 4.2: For s >_ O, the sum is bounded by C(s)iala2...ant -1, where C(s) 
is a locally bounded function. 

Proof." We apply the same reduction. We find we may assume F = Q. Then we 

need to majorize the integral 

~ (1,x)il<R Hi(l' x)llSdx 

by C(s)R n+s. The integrand being bounded by R s, it suffices to show that the 

volume of the compact set H(1, x)]] _< R is bounded by a constant times R n. Thus 

we have to majorize the integral 

dx ° f dxoo 

taken over the set 

II(1,xo~)[I <_ Rli(1 ,x°°) i ] - i ,  ]i(1,x°°)ii ~ R. 

We can use polar coordinates to evaluate the integral at infinity. We obtain a 

larger domain of integration by integrating over 

r < RIl(1,x°°)]l-1. 

We obtain a majorization of the integral by 

Rn-lii(1, x )ii -n. 

Finally, we have to estimate 

R n-1 f II(1,x°°)ll-n+ldx. 
Jli(1,~)il_<R 

As before it is bounded by a constant times R n and we are done. 
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5. Majorization of the truncated Eisenstein series 

We now consider the group G = GL(3). We write Po = MoNo for the parabolic 

subgroup of type (I, I, l). Here M0 is the group of diagonal matrices, A 0 = 

{c~l,(~2} is the set of simple roots and /~0 = {wl,w2} the set of fundamental 

weights. In particular, if we denote by el the canonical basis of the space of row 

vectors, we have 

(46) e(.,~,H(9)) .= ile3gil-1, e(O:,,H(9)) = ile2g A e3gll -I. 

We let Ao be the split component of Mo. The simple reflections are noted sl and 

s2. We set so = s :2s l .  Thus the Weyl group is given by 

= {e, s l ,  s2, s i s2 ,  s2 s l ,  so} .  

Let f(g, ~) be the function on G(FA) x a* defined by 

f(g, ~) = exp (H(g), ~ + Po). 

We fix integers ml > 0 and m2 > 0 sufficiently large and then for all T sufficiently 

regular we define a function fT(g, ~) in the following way: if, for i = 1, 2, we have 

(H(g),w~) < (T,w~) and (~,a v) > ml (po, c~v), (47) 

o r  

(4s) o~ V (H(g),,J~) > (T,w{) and  ((, { ) < -m2(Po ,  e v ) ,  

then fT(g, ~) = f(g, (); otherwise fT(g, ~) = O. 

LEMMA 5 .1 :  O n  a Siege/set the series 

E fT(~g, S) 
~EPo(F)\G(F) 

is bounded by a constant multiple of 

e (H(g),"~l) + e (H(g),w=). 

Proo~ We first remark that if 12 is a compact set there is c and T1 such that  

T - T1 is in a compact set and 

fT(gw, S) ~_ efT1 (g, 8) 
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for all g and all w E it. Thus, it suffices to find a majorization of the series on 

matrices in Ao of the form 

a = diag(al ,  a2, a3) 

with 

la,l > ciia21 > odaal, lala2a31 = 1, 

for some constants cl, c2. We set Ti = COl(T) and ¢i = wi({). 

We use the Bruhat  decomposition to write down the contribution of each coset 

sNo to the series. The contribution of e is trivially bounded by a constant. For 

simplicity, we write the contribution of sl,  S2Sl, So. The other terms are treated 

similarly. For So we find 

ll(al, a=g=, aaga)ll-¢=-' ll(a,a=, a,aa,q, a=aa~)ll -~*- ' ,  

where {~ + {3 = {1{2-  The sum is restricted by the following condition: if ¢2 > ml  

then we demand that  the norm of the first vector be _> e-T2; if ~2 < --m2 we 

demand that  the norm of the first vector be < e-T2; if --m2 _< ~2 --< ml  the 

sum is empty; similarly for the second vector. We can majorize this sum by the 

same sum but with {~ independent of the other variables. This new sum is now 

a product 

II(ala2, alaa~l,a2 aQ)ll y ~  II(a~,a2~2,aa~a)ll -~=-' x ~ a ' -~1-1 
{2 ,{3 {i ,{3 

Each sum is restricted by the same condition as before. If we take ml  >_ 2 it 

follows from the basic lemma that  each sum is bounded above by a constant (for 

¢ in a compact  set). 

We pass to the contribution of the element S2Sl. I t  can be written as 

II(al, a2{2, aag3)ll -¢=-111(ala3, aeaa{=)ll -gl-' .  
{2 ,{a 

The sum is restricted by conditions similar to the previous one. Again this sum 

is majorized by the product of two independent sums: 

II(at, a=e2, aael)ll -~=-1 x ~ II(alaa, a2aa{3)ll -¢'-1, 
{2 ,{I {3 
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where each sum is restricted by the same kind of conditions. The first sum is 

simply bounded above by a constant (for ¢ in a compact set). The second sum 

is bounded by a constant multiple of 

ia31-1 = lala2i = exp (H(a), w2). 

Finally the contribution of sz is written as 

Ila311 - 2-111(a1 3, a2a3 )ll -¢'-1 

The sum is restricted by the same condition as before. Thus the first factor is 

bounded above and the second factor is again bounded by 

[a3[ -1  = ]ala2[ = exp (H(a), w2). 

This concludes the proof, l 

Finally, we consider a parabolic subgroup P of type (2, 1) or (1, 2). Thus 

A p  = {a} ,  /~p = {0)}. For ( e a~ we define 

(49) f (g, () = exp ( g(g), ¢ + pp) . 

If T is suitably regular, we define a new function fT by demanding that  it be 

zero, unless the following condition is satisfied, in which case it is equal to f(g, A): 

(; ,g(g))  <_ (( ,T) and ( ( , a  v) > ml(pp ,a  v) (5o) 

or 

(511 

LEMMA 5.2:  

((,H(g)) < (( ,T)  and ( ( , a  v) < -m2(pp, oLv). 

For g in a Siegel set the series 

P(F)\G(F) 

is bounded by a constant multiple of 

e(H(g),,,1) + e (H(g),~2)). 

The proof is similar (but simpler), l 

We consider now a standard parabolic subgroup P1 = MzNt in GL(3) and an 

Eisenstein series induced from cusp forms belonging to a cuspidal representation 
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~rl of M1. It is noted E(x, ¢, ~). We consider the truncation of this Eisenstein 

series and Arthur's second formula for the truncation: 

(52) ATE(x, ¢, ~) 

= E E E e2(sCR)¢2(sCn, H(hx)- T)) 
P2 6EP2(E)\G(E) sefl(a , ,a ,)  

• exp (s¢ + p2)(H(hx)) (M(s, ¢)¢(6x)).  

To insure convergence, the real part Cn of ¢ is assumed to satisfy 

CR(~ v) > pl(~V), 

for all a E A1. We recall that e2 = -4-1, that H H ¢2(S~R, H) is the characteristic 

function of a certain subset of a2 and M(s, ~) is the intertwining operator• The 

relevant information about (2 and ¢2 is recalled below. We now consider the 

series obtained by replacing each term by its absolute value: 

(53) E E E +2(sCR, H(hx)- T) 
P2 66P2(E)\G(E) s6~(a,,a,) 

• lexp (s¢ + p2)(Ho(hx)) (M(s, ~)¢(5x)) I . 

We will call this series of positive terms the dominating series of the truncated 

Eisenstein series• We will choose an integer m sufficiently large• Then: 

PROPOSITION 5.1: Assume that the real part o[ ~ satisfies 

CR(~ v) > mpl(~v),  

for all ~ E h i .  Then [or ~ in a compact set and g in a Siegel set, the dominating 
series of the truncated Eisenstein series is bounded by a constant multiple of 

e(H(g),wl) + e (H(9),~2). 

Proof'. Assume P1 = Po- We write ~ = ~1Wl + ~2w2. The following table gives 

the value of c2(s~R), s~ and the inequalities defining the set 

{x: ¢2(s~R, go(x) - T) = 1}. 
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e 

Sl 

82 

8281 

8182 

80 

~2 
+ 

4- 

s¢ 
¢10)1 4- ¢20)2 
--¢10)1 4- (¢1 4- ¢2)0)2 
(¢1 Jr- ¢2)0)1 -- ¢20)2 
¢2021 - (¢1 + ¢2)0)2 
--(¢1 4- ¢2)021 4- ¢1022 
-¢5021 - ¢1022 

(0)1, H ( x ) )  

_<T1 
>T1 
_<T1 
_<T1 
>T1 
>T1 

m = 2 we see that  the dominating series is 

31 

(0)2, H(x)) 
<T2 
<T2 
>T2 
>T2 
_<T2 
>T2 

itself bounded by a sum of 

"TEPo(F)\G(F) 

for ml -- m and a suitable m2 > 0. The conclusion follows from the previous 

lemma. The case of a maximal parabolic subgroup is similar. | 

Consider now the quasi-split unitary group U which fixes the Hermitian matrix 

( 0  0 1 )  
( s4)  o =  0 1 0 

1 0 0 

Our task will be to obtain a formula for the integral of a truncated Eisenstein 

series over U(F)\U(FA). It is clear that  the integral converges since the truncated 

Eisenstein series is bounded and U is semi-simple. We would like to replace the 

truncated Eisenstein series by Arthur's second formula and compute formally. 

We assume that the condition of the previous proposition is satisfied: 

CR(Ol v) > /rtpl (Ol v)  

for all c~ E A1. To show that the formal computation is justified, we may replace 

the truncated Eisenstein series by its majorizing series and show the majorizing 

series is integrable over U(F)\U(FA). This will follow from the previous estimate 

and the following lemma: 

LEMMA 5.3: Let ® be a Siegel set for G relative to the parabolic subgroup Po. 

Then ®g = ® ~ tl is a Siegel set for the parabolic subgroup Po N U of U. The 

function 

g ~ exp ( H ( g ) ,  0)4 

is integrable over the Siegel set ~u  of U. 
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Proof'. The intersection of P0 with U is a maximal parabolic subgroup of U 

defined over F with Levi-decomposition: 

Po N V = (Mo N V).(go M U). 

The first assertion follows at once. We denote by Hu and Pu the analogue of H 

and p for the group U. We have, for i = 1, 2 and u E U, 

e(H(u),~D = e(Hv(u),Pv). 

The function on the right is clearly integrable over the Siegel set of U. I 

6. Integral of  truncated Eisenstein series: I 

Let ~ E S(F) C GL(n, E)  and U -- U~ be the corresponding unitary group. 

Since a truncated Eisenstein series is rapidly decreasing, it is integrable over 

U(F)\U(FA). Recall our task is to compute this integral (for n = 3). In this 

section we study this question from a formal point of view. It is best to do this 

in the context of GL(n). By the results of the previous sections, the computation 

will be justified for n = 3. Thus we let ~ be an arbitrary invertible Hermitian 

matrix. We let S~ be the variety of matrices equivalent to ~. We consider the 

polarization map 

(55) g ~ g . ~ ' g *  

from G onto S~ and the action of G: 

(g, s) ~ gsg*. 

According to a result of Springer ([t.S]) the orbits of No(E) on S¢ have a set of 

representatives whose elements are product of a permutation matrix of order 1 

or 2 and a diagonal matrix. Thus if P is another standard parabolic subgroup, 

each orbit of P in S admits a representative of this form. Of course, two such 

matrices may be in the same orbit of P(E). It follows that  

(56) P(E)\G(E) = U ~?~T~(F)\U(F), 

where ~?~ maps to w under the polarization map and 

(57) T~ = ~?~l P(E)~?~ N U(F). 
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The union is over a set of representatives w of the above type for the orbits of 

P(E). We also introduce 

(58) Tw = P(E) N rl~U(F)rl~, 1. 

Thus T,~ is the stabilizer of w for the action of P on S. 

Let ¢ be a continuous function on N(EA)P(E)\G(EA). Set 

(59) ¢(g) = E ¢(7g). 
76P(E)kG(E) 

For the moment we assume that the series 

76P(E)\G(E) 

converges absolutely and is integrable over U(F)\U(FA). 
following formal computations are justified. We compute 

(60) / ~)(u)du. 

It is equal to 

(61) 

In particular, the 

~ /T, (FA)\U(FA) dU /T,~(F)\T,~(FA) ¢(trl~u)dt" 
The group T,~ need not be uni-modular; thus in the above integral, dt is the 

left invariant measure on T(FA); after integrating over t the resulting function 

of u transforms under the module of the group T~ and du denotes a linear form, 

'invariant on the right, on the space of functions transforming on the left under 

this module. In this section, our task is to find which elements w contribute 

effectively to this sum. The result (Proposition 6.1) is similar to a result of 

Arthur-Langlands giving the scalar product of a truncated Eisenstein series in- 

duced from cusp forms with itself: if the Eisenstein series is constructed from a 

parabolic subgroup P then, a priori, all associate Pi of P and all double cosets 

Pi\G/Pj contribute to the scalar product formula; however, it is found that  all 

only the double cosets with a representative in fl(a~, aj) contribute. 

Fix a w and set 

O(g) = O g = w t ~ - l w - 1 .  

Thus 0 is an automorphism of order 2 of G (defined over F when we regard G 

as an F-group by restriction of scalars) and the group of fixed points of 0 is U~. 
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In particular, e p  is a semi-standard parabolic subgroup of G equal to wPw -1 

and g is in T~ if and only if g is in P n e P and, in addition, g = 0(g). We let 

P = M N  be the Levi decomposition of P with M 3- M0. Then 

OF =o MOW = (wMw-1).(wNw-1) 

is the Levi decomposition of Op with °M D Mo. We recall standard results on 

the intersection of two parabolic subgroups: 

LEMMA 6.1: The group 

V = (M n ON). (N n °M) .  ( N A  ON) 

is a unipotent subgroup. The subgroups 

N N ° N ,  ( N N ° M ) . ( N A ° N ) ,  ( M n e g ) . ( g n ° N )  

are normal subgroups of V. The commutator of an element of M n ON and an 

element of eM n N is in N n ON. Finally V = O(V) and we have a semi-direct 

product: 

P A  Op = (M n °M)V. 

In particular M A O p is a parabolic subgroup of M with unipotent radical M A e N. 

This allows us to have a simple description of T~o. We let V~ be the intersection 

of T~o and V and similarly, we let M~, be the intersection of M and T~. Thus 

M~o is in fact the group of points of M fixed by 0 and V~ is the group of points 

of V fixed by 0. 

LEMMA 6.2: We have a semi-direct product: 

T~o = M~o V~,, 

where M~o is reductive and V~o unipotent. An element v E V is in V~o ff and only 

if it is of the form 

(62) v = v i O ( v l ) u l u 2 ,  

where vl is an element of M O° N, and Ul E N A ON is a solution of the equation 

(63) Ul0(Ztl) -1 = O ( V l ) - l v l l O ( v l ) V l ,  

and u2 is an element of N O ON fixed by O. Moreover, given vl E M n ON and 

u2 E N n ON fixed by O the equation (63) has a solution in N n ON and the 

element v de/ined by (62) is in V~o. 
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Proof: Let g be in P M Op. Then 

g = mv, m E M CI °M, v E V. 

Thus O(g) = O(m)O(v). In particular g = O(g) if and only if m = O(m) and 

v = O(v). This establishes the first assertion. 

Let us write v E V in the form 

V ~ ~)lV2U 

w i t h v ~ E M r ~ ° N ,  v2E ° M M N ,  u E N C ) ° N .  Then 

O(V) ~- O(Vl)O(V2)O(U ) = O(V2)O(V2)--IO(vl)O(V2)O(U). 

Now 0(v2) is in M N ON a n d  O(V2)-IO(vl)O(v2) in (M M ON). (N N ON). Now 

suppose that v = O(v). Then O(v2) = vl. Hence we see that 

v = v x O ( v l ) u  

and 

uO(u)-l=O(Vl)-lvflO(vl)vl. 
Conversely, let vl E M N ON be given. Then 

s = O(v~)-lv~lO(vl)vl 
is in N M ON and verifies O(s) = s -z.  Since 0 defines an automorphism of order 

2 of the unipotent group N M ON, there is an element u of N Cl ON such that 

s = u O ( u )  - 1 .  

Then 

V = Vl0(Vl)U 

is fixed by 0. This concludes the proof of the lemma. | 

LEMMA 6.3: Let N,~ be the group of points on N A ON fixed by O. Then 

/M dvl [ ¢(U2UlO(Vl)Vl)du2 
n eN(FA) JN~(FA) 

is an inwariant measure on Vw(FA). In this formula, du2 is the standard Haar 

measure on Nw(FA), dVl the standard measure on M n ° N(FA), ul any dement  

of N N ON such that the product ulO(vl)vl is in V,~. After integrating over u~, 

the inner integral does not depend on the choice of ul and is indeed a function 

of vl alone, which gives a meaning to the integral 
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Proof: According to the previous lemma, we can write every v C Vw in the 

form v = Ztl~(Vl)'O 1 with vl E M fq ON and ul E N M ON such that  ulO(ul) -1 is 

the commutator  of vl and 81(Vl) .  Furthermore, this decomposition is compatible 

with the product in the sense that  

('a10(Vi)Vl)(?~20(V2)V2) : Zt30(VlV2)(VlV2) , 

as follows from the fact that  the commutator  of an element of M M ON and a n  

element of °MMN is contained in NM O(N). Moreover, N~ is a normal subgroup 

of Vw. The lemma follows from these observations. 

There is a similar decomposition for the invariant measure on the quotient 

V~(F)\V~(FA). We are now ready to state the main result of this section: 

PROPOSITION 6.1: Suppose ~ is cuspidal on M ~. The integral 

(64) /T~(F.)\U(F.) du /T,o(F)\T~(FA) ¢(tr~u)dt 

is zero unless w normalizes M. It is then equal to 

where df is the module of the group Tw. 

Proof: We look at the inner integral; it has the form 

/T~(F)\T,o(FA) ¢(tg)dt. 

It  can be computed as 

/M~ (F)\M~ (FA) ~(m)drn / ¢(vmg)dv. JV~(F)\V~(FA) 

In turn, we look at the most inner integral: 

/v,o(F)\ v~, (FA) ¢(vmg)dv 

a M  use the previous lemma. Since ¢ is invariant under N(EA), the integral over 

u2 disappears and we are left with 
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Now suppose ¢ is cuspidal on M 1. Then the above integral is 0 unless MN eN = 

{e}, that  is, the parabolic subgroup MN 0p  of M is equal to M. This is equivalent 

to M N °M = M or M C °M. Since eM is actually a conjugate of M, this is 

equivalent to M = °M or wMw -1 = M. This concludes the proof of the first 

assertion of the proposition. The second assertion follows. 

Remark: Mutatis mutandis, the above argument applies to any symmetric 

space. Results of this type are stated in [JR] and IF J], [yF2] and [yF3]. The 

discussion of the corresponding result in [yF2], although incomplete, is sugges- 

tive and we have benefited from it. 

7. I n t e g r a l  o f  t r u n c a t e d  E i s e n s t e i n  series:  I I  

From now on we take n = 3. 

7.1 MAXIMAL PARABOLIC SUBGROUPS. We now consider the parabolic P1 of 

type (2, 1) and the parabolic P2 of type (1, 2). We set/~i  = {wi}. Then ~(al, a,) 

contains only one element s. We consider an Eisenstein series for P1 say which 

is constructed from a cuspidal representation 7r of M1 i. 

PROPOSITION 7.1: I f T  is sumciently regular, the integral 

U(F)\U(FA) ATE(u' ¢' r~)du 

does not depend on T. 

Proof" By analytic continuation, it suffices to prove this when we can estimate 

the dominating series of the truncated Eisenstein series. Then the truncated 

Eisenstein series can be written as a sum of two terms 

01( o)+ Z o2( g) 
Pi (E)\G(E) P2 (E)\G(E) 

where 0i is invariant under Ni(EA) and cuspidal on Mi. More precisely: 

(66) 01(x)  = (~2(~R, Ho(X)  - T)e((wpi 'H°(x))~)(x) ,  

(67) 02(x) = e2(sCa)¢2(s~a, Ho(x) - T)e(S(+P2'H°(~))M(s, r¢)¢(x).  

We recall that 

¢2(¢R, go(x) - T) = 1 
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(Wl, Ho(x)) < Wl(T). 

¢2(s~R, Ho(X) - T) = 1 

Ho(x)) > 

As observed before, we can compute formally. We consider a set of representatives 

for the orbits of Pi(E) on the set of Hermitian matrices equivalent to a.  We can 

choose for representatives matrices of the form ~ = w~, with (~ diagonal and w a 

matr ix  of permutation. For each such matr ix  ~ we choose y~ such that  

(68) ~at~ = ~. 

Then the integral of ~ 0¢(~,u) can be written as 

(69) ~ J~-~' P~(E)rlcnU(F)\U(FA) Oi(~,u)du. 

By the previous section, the cuspidality implies that  the integral is zero unless w 

normalizes M~. Here this means that  w is in Me. Thus we need only to consider 

E Me. Now the element 

verifies 

We now appeal to a lemma: 

y = ~?~u 

y(Tt y ~ ~. 

LEMMA 7.1: Fix i. Let ~ be in Mi. H g is any element such that 

then 

w~(H(g)) < O. 

Proof: Using the decomposition G = G1AG, we see that  we may assume that  

g E G 1. Suppose i = 1. We have 

exp(wl, H(g) ) = Ile3gll -c, 
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for some positive constant c. Now 

ga = ~t~- l .  

Since a is in K and ~ is in M1 we get 

I I ~ g l l - - I I ~ = g ~ l l - - I l e 3 ' y - l l l  • 

On the other hand, writing g E G1 as g = bk where b is a triangular matr ix  with 

diagonal entries b~, we have 

tl~3gll = I1(o,o, 1)gll = Ib31, 

I1~ ~Y-~II = I1(*, *,b~l) l l  -> Ib=l -L 

Thus Ib3] _> 1 and our conclusion follows in this case. 

A similar argument applies to i = 2. We have 

exp(w2, H(g)) = It~=g ^ e~gll -~, 

with c > 0. From 

we get 

ga  = ~ t y - 1  

Wri t ing  g = 6k as before, we get 

II~=g ^ e3gll -- Ib=b31, 

tie3 '~ -~  ^ e3 '~ -~ l l  = I1(*, *,bEzbEZ)ll -> Ib=b31-1- 

Hence Ib2b31 >_ 1 and our conclusion follows as before. | 

Thus if w~(T) > 0 we find that  the function 0l(r/~u) is actually independent of 

T :  

81(~u) = e (¢+"''"°('~))¢(~u), 

while ~2(~?~u) = 0. Our conclusion follows. | 

We set 

(70) -(¢, ~) = ~ ] e(~+Pl 
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Note that  there are infinitely many terms and that  the inner integral factors 

trough an integral of the form 

/ ¢(v~u)dv 

taken over the adelic quotient of U~ N M1. We recall that 

M1 -~ GL(2) x GL(1). 

In particular, the integral is zero unless in the representation 7r = ~rl ® ~r2, the 

factor ~rl is distinguished with respect to a unitary group in GL(2) (not necessarily 

quasi-split) and the character 7r2 distinguished with respect to the unitary group 

in one variable U1. In particular, Irl and ~r2 must be quadratic base change. Each 

term in (70) is a linear form invariant under U(A). Moreover 

(71) / ATE(u, ¢, lr;)du = E(¢, 7r~). 

Thus the right hand side is actually a meromorphic function of ¢ with singularities 

contained in those of the Eisenstein series. It may be that  each term in (70) has 

an analytic continuation as well but we will not investigate the matter further. 

7.2 MINIMAL PARABOLIC SUBGROUP. We now discuss the integral of the 

truncated Eisenstein series attached to P0- 

LEMMA 7.2: A set of representative for the orbits of Po(E) on the set of 
Hermitian matrices equivalent to a consists of the matrices 

81, 82, 80 = (T 

and diagonal matrices of the form 

a = diag(al,  a2, a3), 

where --o/io~2ol 3 iS a norm and the al are in F x and taken modulo norms. 

The truncated Eisenstein series is written as 

(72) ATE(g'¢'¢)= ~ Z 08(~g), 

whe£e 

(73) 

se~(ao) ~fePo(E)\Go(E) 

08 (g) = e2(s~n)¢2(s~n, H(x) - T)e (8~+p'H(x)) (M(s, ~)¢)(x). 
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We assume that  (~R, ~v) > m(p0, ~v) for a suitable integer m. Then we can 

compute the integral of the Eisenstein series formally because the majorizing 

series is integrable over U. 

The integral of the Eisenstein series is now 

(74) E ~ /u 08(~?~u)du, (F)N~[1Po(E)~?~\ U(FA) 

where we sum over all elements ~ of the previous proposition and we choose ~/~ 

such that  the relation (68) is satisfied. We first consider the subsum correspond- 

ing to the diagonal matrices. 

PROPOSITION 7.2: The sum 

~ ~s /U(F)n~ po(E)~o,U(F,) Os('(~u)du 

is actually independent of T. 

Proof'. Note that  if y = ~ u  then 

yo"t~ = a. 

But for such an element we have the following result: 

LEMMA 7.3: Suppose that 
go"t-~ = Of. 

Then [or i = 1, 2 we have w~(H(g)) <_ O. 

Indeed we have 

and thus 

go" ~ o~tg - 1  

(~, H(g)) = (wi, H(ga)) = (wi, H(ty-1)) 

and one concludes as before. | 

Thus in the expression for 0s(~?~u) the characteristic function ¢2 is zero unless 

s = 1 in which case it is one. This proves our contention. In particular the 

contribution of these terms can be written as 

= [ (75) 
, ]  
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Once more the sum is infinite and the inner integral factors through an integral 

over Uc~(F)AMo(F)\U~,NMo(FA). Thus the integral is zero unless 7r -- 7rl®Ir2®Tr3 

is distinguished with respect to the group U~ N Mo; in turn,  this intersection is 

the product  of three copies of the uni tary  group in one varaible Ut. It  will be 

convenient to introduce the notat ion 

5(Tri) = f ~h(u)du. 
Ju t (F) \UI(FA) 

We take the volume of U~(F)\U~(FA) to be one. Thus this is 0 unless the char- 

acter  ~i is distinguished (i.e is a base change) in which case it is 1. Thus  E = 0 

unless 

~( ' f f i )  = (~(7r2) = ~( 'ff3) = 1. 

Again (75) is a linear form invariant under U(A). 

We will also set 

~(Tri, Irj)= /E×XE×,~ 7ri(a)Trj(-5)-lda. 

Again, we take the volume of E×\E ×,1 to be one. We also use the exact sequence 

1 , E X \ E × .  1 , E X \ E  ~ logl,;I ~ , 0 

to define a measure on the id~le-class group of E.  The integral is zero unless 

. , (a )  

in which case it is 1. 

Note tha t  7rl?r271- 3 = ~d and the character  w is itself distinguished. Thus  ~(71"1) ---- 

~i(lr2) = 1, say, implies in fact 5(1r3) = 1. Likewise, the relation 5(7r1,1r2) = 

1 implies in fact 5(7r3) -- 1. Finally if 5(~rl) = 5(r2) = 1 then the relation 

5(7h, 7r2) = 1 is equivalent to 7r1 -- 7r2. 

Now we give the contr ibut ion of the remaining ~. 

PROPOSITION 7.3: Assume T1 = wl (T) = ~2(T) and write ~ = (10.11 --~ ~2o.)2. For 

= a. we can take ~ = 1 and the contribution is: 

_. e(¢1+(z) T1 f 
(76) 0(n"Tr3)6(Tr2) ~-~1~2 x l ¢ ( k ) d k  

e -  ((:1 +(:2)T1 f 
(77) × 

d 



Vol. 89, 1995 CONTINUOUS SPECTRUM 43 

where the integral is over K n U(FA). For ~ = Sl we can take ~ = s2 and the 

contribution is 

e¢1 T1 / 
(78) ¢---~-5(~1,r2)~(~3) × M(s2,¢2w2)¢(k)dk 

(79) e-¢~T~ f -- (--------~-~(rl,r2)~(r3) x M(82,((1 + (2)w2)M(sl,()¢(k)dk 

e-  ((1 +~2)T1 / 
(80) (~1+(2) 3(rl,r3)5(~2) × M(s2,¢lw2)M(sls2,()¢(k)dk. 

Finally, for ~ = s2 we can take ~ = 81 and the contribution is 

e(2T1 / 
(81) ¢25(~2 ,~3)~(~1)  X M(Sl,; lwl)¢(k)dk 

(82) e-¢2T~ / 
-- ¢ 2 5 ( ~ 2 , ~ 3 ) ~ ( ~ 1 )  X M(sl,((1 +(2)Wl)M(s2,()¢(k)dk 

e-(~l +¢2)T~ / 
(83) ((1 + (2) ~(~1'~3)~(~2) X M(sl,(2wl)M(S2Sl,()¢(k)dk. 

The integral 

f ATE(u, ¢, ~r¢)du 

is equal to the sum of the previous terms and 

(84) ~(~1)~(~2)~(~3)~(¢,~). 

For clarity, we have suppressed the representation ~ from the notation in the 

intertwining operators. Thus in (78) the intertwining operator should be written 

as 

M(s , 

Likewise in (79) the operator on the left should be written as 

where r '  = s i r  = ~2 ® r l  ® r3. 

Proof'. Consider first the case of a. Since 7o = 1 the contribution of a can be 

written as 

Z/Os(u) u. 
8 
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We use the Iwasawa decomposi t ion in U induced by the Iwasawa decomposi t ion 

of G to define a Haar  measure. If  

(85) u =  0 1 - ~  0 m 0 k, 

0 0 1 0 0 a l  I 

with z + ~ = 0 and m ~  = 1, then 

du = dxdzd x aldkdmlal1-2. 

We also write this decomposi t ion u = nak where 

a = d i a g ( a l , m , ~ - l ) .  

Then  

(86) e2.V (Hu (a)) = lal12 = e"°CH(~)). 

Also 

(87) log lax[ = wl ( g (u) ) = w2( g (u) ) = t. 

Recall we assume tha t  T1 = wl(T) = w2(T). Referring to the table after 

Propos i t ion  5.1, we see tha t  ¢2(sffn, H(u) - T)  = 0 except for s = e and s = so. 

Indeed, for s = sl for instance, the relation ¢2(s¢R, H(u) - T) ¢ 0 implies 

T1 < Wl(H(u)) = w2(H(u)) < T1 

and these two inequalities are not  compatible.  

After  integrat ing over Md t') U we get for the contr ibut ion of a:  

5(Th,r3)5(Tr2) /_~e(¢l+") td t f¢(k)dk  

which yields at  once the required result. 

We pass to the contr ibut ion of Sl. I t  is equal to 

The  inner integral is over the intersection 

T = Pon  s2Us~ 1. 
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This can described as the group of matrices of the form 

(89) 
(lz0)(al 0 0) 

0 1 0 0 ~11 0 g =  

0 0 1 0 0 m 

with z + ~ = 0 and m ~  = 1. We remark that  s2Ts~ 1 is a subgroup of Po A U. 

We take for left Haar  measure on T the one defined by 

Thus we have for g E T 

dg = dzdmd × a 1 lal 1-1. 

w:(H(g)) = O, 

po(H(g)) = Wl(H(g)) = log l a l l  = t, 

H(gs2u) -- H(g) + H(s2u), 

wI(H(gs2u) ) = w,(H(g) ) + w,(H(s2u) ). 

Recall 

Os(gs2u) = e2(sCa)¢2(sCn, H (gs~u) - T)e('¢ +P°'H(g~2~') ) M ( s, ¢)¢(gs2u). 

Since y = gs2u verifies 

ya : 81 t ~ - I  

we have, as before, w2(H(gslu)) < O. Referring again to the table after 

Proposition 5.1, it follows that  

¢2(s~R, H(gs2h) - T) -- 0 

unless s = e, Sl, sis2. Moreover, for these terms one of the two inequalities which 

define ¢2 is vacuous. Consider thus the term s = e. Then 

if and only if 

¢2(¢R, H(gs2u) - T) ~ 0 

Wl(H(g)) _< T1 - -  Wl(H(s2u)). 

Integrating over the group T we get 

6(Irl, ?r2)~(Tr3) / du / _ ~  -~l (H(8"u)) et¢~ dte( ¢l~ +¢2~2 + po,H ( ,2~) ) C( s2u ). 
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This becomes 

5(7i'1,--,t 2)0171"3) T ' ~ "  e ~1T1 / e(i2~2+P°'H(s2u))¢(s2u) du" 

To continue we remark that  s2Ts21 is the group of matrices of the form 

el 0 z ) 
0 m 0 • 
0 0 ~-~ 

Thus, to integrate over U modulo this group as we must, we can use the following 

system of coordinates: 

u =  0 1 x k 

0 0 1 

and then 

du = dxdk. 

In view of the invariance of ¢ under No we see that  the inner integral becomes 

e~l T1 / e( ~2~2+P°'H (s2nk ) ) ¢( s2nk )dxd k 

where ( 00) 
n =  0 1 x • 

0 0 1 

Thus the integral in n can be interpreted as an intertwining operator and we 

obtain the first term of the contribution of si. The other terms are obtained in 

a similar way. 

Note that  all the terms in the previous proposition, with the possible exception 

of E, are meromorphic functions of ~. It  follows that  the same is true of E as 

well. Again, it may be that  each term in (75) is meromorphic as well. 

7.3 SINGULARITIES. We now analyze the singularities of each term in the 

previous proposition. If ~(r i ,  r3) = 5(~rl, ~r2) = 5(~r2, 7r3) = 0 the integral is zero 

unless 

= = 6 ( r 3 )  = 1 .  

I t  then reduces to the term E(¢, 7rc) whose singularities are thus contained in the 

singularities of the Eisenstein series. 
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Now assume that 

6 ( ~ ,  ~3)5(~2) = 1. 

Consider the sums of all terms with a singularity on the line ~l + ~2 = 0: (76), 

(77), (80), (83). We first claim that the sum of (77) and (83) has no singularity 

along the line ~1 + ~2 = 0. Indeed, on this line, we have ~2wl = s2sl~ and thus 

M(so,~)=M(Sl,S2S1~)M(s2sl,~)=M(Sl,~2wl)M(s2sl,~). 

Thus the singularities do cancel. Consider the sum of (76) and (80). Suppose 

that r l  # ~r3. This is equivalent to 5(r l )  = 5(~r3) = 0. Then all the other 

terms in the expression for the integral of the truncated Eisenstein series vanish 

(including E). Thus the sum of these two terms must have no singularity on ia*. 
In particular, it follows that 

/ ¢(k)dk : / M(s2,~lw2)M(SlS2,()C(k)dk 

along the line (1 + (2 = 0. Again we have 

M(so,() =M(s2, sls2~)M(SlS2,~). 

Along the line ~1 -~- ( 2  = 0 we have sls2( = ( l W 2 .  Thus the above identity can be 

written 

(90) / ¢(k)dk = / M(so,()¢(k)dk. 

Equivalently, we can write the sum of (76), (77), (80), (83) in the form 

e((I+G)T1 _ e-(~+(2)T~ [ 
(91) ~1 + ~2 J ¢(k)dk + e-(;~+¢~)T1F(¢) 

where F is a smooth function (of slow growth) on ia*. 
Now suppose that  rri = r3. Thus 50rl ) = 5(~r3) = 1. We claim that  

M(So, ~) = -1 

along the line (1 + (2 = 0. Indeed, 

M(So, () = M(sl, s2sl¢)M(s2, Sl()M(sl, ~). 

However, S2Sl( = sl~ since ~1 + (2 = 0 and S2Slr = slTr since 71" 1 : -  71" 3.  It follows 

from the properties of the intertwining operator on GL(2) that  

M(s2, s1¢) = - 1  
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and 

M(so,~)=-M(sl,s2sl~)M(Sl,~). 

Using again the fact that  s2sl¢ = s1¢ and s2st~ = sir we find this is 

= -M(Sl,Sl;)M(Sl,~) = -M(s~,;) = -1. 

On the other hand, from the functional equation of the Eisenstein series, we get 

E(x, M(so, ~)¢, () = E(x, ¢, ~) 

and it follows that  the Eisenstein series vanishes along the line ~1 + ¢2 = 0. Note 

that  in this case the singularities of (76) and (80) do not cancel but  double. 

We now assume that 

~(r l ,  r2)~(~3) = 1 

and consider the sum of the terms which have a singularity along the line ¢1 = 

0: (78) and (79). Assume first Irl ~ 1r2. Then ~f(~rl) = 5(7r2) -- 0 and all the other 

terms vanish including E and we conclude that  the residues of the two terms 

along the line ~1 = 0 cancel, that  is, 

f M(s2,¢2w2)~)(k)dk = / M(s2,¢2w2)M(sl,~2w2)~(k)dk. 

Equivalently, we can write the sum of (78) and (79) in the form 

(92) e;1Tl  --  e - ; 1 T 1  / M(s2, ~2w2)¢(k)dk + e -¢'T1F(~) 

where F is a smooth function (of slow growth) on ia*. 
If, on the contrary, ~rl = Ir2, then ~(7r!) = ~(7r2) = 1 and on the line (1 = 0 

we have sl~ = ~ and s11r = r .  It follows that M(sl, ()  = - 1  and again the 

Eisenstein series vanishes on this line. Again in this case the singularities do not 

cancel but double. 

A similar discussion applies to the case where 

and the remaining terms. 

We summarize our discussion as follows. 
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PROPOSITION 7.4: 

(i) Suppose that 
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6 ( ~ 1 )  = 6 ( ~ 2 )  = 6 (~3 )  = 1 

but not two of the characters lr~ are equal. Then the integral of the trun- 

cated Eisenstein series reduces to E and in particular has no singular line 

on in*. 

(ii) Suppose that 

6 ( ~ 1 )  = 6(7r2) = 6(~r3) = 1 

and at least two of the characters are equal. Then the product of each term 

in the previous proposition by 

(93) W(¢2, 7r() 

is a smooth function of slow growth on ia*. 

(iii) Suppose that 6(zr~) = 1 but 6(Irj) = 6(rk) = O. Then E = O. All terms 

vanish unless 

6(~r~, 7rk) = 1. 

Then the integral of the truncated Eisenstein series can be written in the 

f o r m  
e((,&)T1 _ e- ( ( , a )T1  

A(( )  + e-(('a)T' B ( ( )  ((,a) 
where A and B are smooth functions of slow growth on ia*. Here & is 

the coroot attached to the root al  + a2 if  {j, k} = {1, 3}, the root o~ 1 if  

{j,k} = {1,2}, the root a2 i f { j , k }  = {2,3}. 

In all other case, the integral of  the truncated Eisenstein series is 0. 

Prook By a smooth function of slow growth on ia* we mean a smooth function 

whose derivatives of all orders are at most of polynomial growth. We have seen 

that the matrix coefficients of the intertwining operator are smooth functions of 

slow growth. Thus the only point which remains to be verified is (ii). Assume 

that  

~(71"1) = (~(7r2) = (5(7r3) = 1 

and say 

71"1 ---- 71"2 ~-- 71"3. 

Consider the terms other than ~. Each term has only one singular line which 

intersects {a*. On such a line the Eisenstein series vanishes. Thus our assertion 
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is satisfied for each term different of E. Since the Eisenstein series itself has no 

singularity on ia*, the assertion follows for the term E as well. m 

8. Spectral  contribution 

In this section we obtain the spectral contribution of each parabolic subgroup. 

8.1 MAXIMAL PARABOLIC SUBGROUPS. We now consider the spectral 

contribution of the parabolic subgroups P1 of type (2, 1) and P2 of type (1, 2). 

Let X be a cuspidal datum for these parabolic subgroups. Thus X can be viewed 

as a cuspidal automorphie representation of GL(2) x GL(1) and defines repre- 

sentations ~r of Mi 1, i = 1, 2. Recall the corresponding Eisenstein series gives no 

residue. 

PROPOSITION 8.1: We have 

f K×(u,n)du-O(n)dn = ~Pi ~* ZS(IP~(~rof)C'rrg)W(C'rc<)dt@ 
• ¢ 

Furthermore, the sum 

is finite. 
Proof: It is understood that in these formulas, the representation Ir is deter- 

mined by X in the sense that  (Pi, Mi, rr) belongs to the class X. We first prove 

the last assertion. As we have seen, there is To (independent of f and X) such 

that 

E(¢, r<) = / AT°E(u, ¢, lr<)du. 

Thus the expression we have to estimate is 

~p~ / ~ / AT°E(u, Ip~(rr<,f)¢,~r<)duW(¢,rr<) d,@ 

Our assertion follows from the basic majorization (23). 

The first assertion follows similarly from Proposition 2.5. 
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8.2 THE MINIMAL PARABOLIC SUBGROUP. We pass to the contribution of 

the minimal parabolic subgroup Po = MoNo. A cuspidal datum is then a triple 

of characters of G~, ) / =  )/1 ® )/2 ® )/3, defined up to a permutation. In addition 

)/1)/2)/3 ---- ~d, where w is fixed and a base change. By Proposition 2.5, if T is 

sufficiently regular, 

/ Kx(u'n)O(n)dudn = / ATKx(u,n)O(n)dudn 

= n(Ao)- i  ~ ~ f ( /ATE(u,  lo(rC,, f)¢,,)du)W(¢, ~r,)d[,,. 

The sum is over all permutations lr = lh ® 7r2 ® 7r3 of the given triple )/. We have 

written I0(7r¢) for the induced representation IF o (7r¢). We recall that  n(Ao) = 6. 
We may further assume that wl(T) = w2(T) = T1 as in the previous section. 

PROPOSITION 8.2: Assume that f = fl * f~ where the functions f~ are K-finite 
and f~(g) = f2(g-1). Suppose that 6()/i) = 1 for i = 1,2,3. Then 

1 
f ~ E( Io(~ ,  ]1)¢, ~ ) W ( I ( ~ ,  f2)¢, ~ )  dl~l- f K~ ~ ~ (u, n)duO(n)dn 

Furthermore, if we sum over all such triples )/then 

~x ~ f ~¢ E(Io(zc,,fl)¢,lr~)W(I(Ir,,f2)¢,Tr~) d[~, 

is finite. 

Proof'. Suppose that  not two of the characters Xj are equal. Then 

) /5) = 0 

for i ~ j .  Thus the integral of the truncated Eisenstein series reduces to the term 

and we can argue as in the previous case. In particular, the contribution of 

these triples to the sum with the absolute values is finite. Now suppose that the 

three characters are equal so that  )/3 = w. Then 

Z Io(r(, r()du re) ATE(u, f )¢ ,  W(¢, 
¢ 

is the sum of 

~(Io(Trff,/1)¢, 7r~)W(Io(Tr~, f2)¢,  ~ )  
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and 8 other terms. For instance, 

e_(G+(2)T, h(z) 
¢1 -[- (2 

where f 
h(z) = [ ~ M(so, 7r¢)Io(Ir¢, fl)¢(k)dk W(Io(r¢, f2)¢, re). 

d ¢ 
On ia* the function h(¢) is a Schwartz function. Since the Eisenstein series 

E(y, ¢, 7r;) vanishes on the line ¢1 + ¢2 = 0, so does h. Thus the quotient 

h(z)/(¢l + ~2) is again a Schwartz function. In particular, it is integrable and 

its integral against the exponential factor tends to 0 as T1 tends to infinity. We 

obtain then the first assertion of the proposition, plus the fact that, for a given 

triple X, the sum 

/ ~¢ E(eo(~r,,fl)¢,~r¢)W(lo(Tr,,f2)¢,Tr¢) d,¢, 

is finite. Since there are only finitely many triples ) / =  )C1 ® X1 @ X1 for which 

Io(~r¢, f l )  ¢ 0 and )/3 = w, their contribution to the infinite sum is finite. 

We now consider the case where two of the characters are the same, say X1 = 

)/2 ¢ X3. Thus $(X1,X2) = 1 and/f(X3 ) = 1. On the other hand 5(X1, X3) = 

5(X2, X3) = 0. We obtain again the first assertion of the proposition. We have to 

show that  the contribution of these triples to the sum with the absolute values 

is finite. We consider for instance the contribution of the r of the form 7r~ = )~i. 

We can write 

E(Io(r¢, f l )¢ ,  7r;)W(Io(~r¢, f2)¢, ~'¢) 

(94) = / ATE(u, I,~(fl)¢, 7r;)duW(Io(Tr¢, f2)¢, Try) 

e(1T1 [ 
( 9 5 ) - - ~ 1  J M(s2, ¢2w2)Io(Tr~, fl)¢(k)dk W(Io(Tr¢, f2)0, 7r() 

e-GT1 / 
¢1 M(s2, (¢1 + ¢2)w2)M(Sl, ¢)I0(7r(, f)¢(k)dk W(Io(r(, f2)¢, 7r¢). 

We have already observed many times that the expression 

/ ~¢ /ATE(u, Io(Tr,, f l )¢ ,  7r,)du W(Io(Tr,, f2)¢, ~-,)d,¢,, 
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where we sum over all ~r, is finite. Thus it suffices to prove the analogous assertion 

for the two remaining terms. For the second term say, this amounts to proving 

that 

(96) ~ /  ~ ¢~/M(s2,~2w2)lo0rofl)¢(k)dkW(Io(Tr, , f2)¢,Tr , )d,~,  

is finite; the sum is over all rr of the above form. From Proposition 3.3, for f2 

fixed with a given K-type, we have a majorization of 

W( Io(Tr¢, /2)¢, 7r¢) 

and its derivatives. Since the function vanishes on (1 = 0 we get a majorization 

of the quotient of the form 

W(Io(~¢, A)¢, ~¢) 
< c (x)O + Ilql~)m(~)ll¢ll. 

On the other hand, we have 

f M(s~, ~2)Io(~, < IIIo(~, fl)lL, f l ) ¢ ( k ) d k  

where the norm is the operator norm on the space of vectors with a given K-type. 

Thus the expression (96) is bounded by the dimension of the K-type times 

c(x) /IIIo(~¢,/~)11(1 + IKtl2)m('~)dlq. 

In turn, the norm of the operator is bounded by the norm of a suitable matrix 

of the form 

(/AoNo f l ( k~lnakj )dnx(a)e(H(a)"-P) da) 
where ki are points in K. It follows from abelian harmonic analysis that 

C(X) / / fl(k(lnakj)dnx.(a)e(H('~)'¢-P)da (1 + II~:ll~)'~¢'~)dl~l 

is finite. Our assertion follows. | 

We may further simplify the result of Proposition 8.2. To begin with, the 

expression in the Proposition may be written 

E E(lo(Tr¢, f)¢,  7r¢)W(¢,Tr¢)dli'l. 
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We claim further that this expression does not depend on the choice of r in the 

class of X. Indeed, there is nothing to prove if all the characters Xj are equal. 

Suppose on the contrary that not two of the characters are equal. Then, for T 

suitably regular, 
P 

~(¢, 7r¢) = j ATE(u, ¢, 7r~)du. 

It follows from the functional equation of the Eisenstein series that 

and 

for any s. Thus 

E(¢, 7r¢) = E(M(s, ~r¢)¢, s~rs¢) 

W(¢, 7r¢) = W(M(s, Ir;)¢, sTr~¢) 

f ~ ~(Io(Tr~, f)¢, ~r¢)W(¢, zc¢)dlC[ 
¢cBo(~) 

= f ~ E(Io(s~rs¢, f)M(s, Tr;)¢,srs¢)W(M(s,r;)¢,~<)dlCI 
¢~o(~r) 

Since M(s, 7r¢)¢ is an orthonormal basis of 7-/°(sir) the inner sum can be rewritten 

as 

Z(Io(srs(, f )¢ ,  sr~¢)W(¢, sTr~¢). 
CeBo(s~) 

When we integrate over ~ we may take s¢ for variable to obtain our assertion. 

If two of the characters are equal let us set 

oT(dp, 7r¢) = E(q~, 71"¢) -- / ATE(u, ¢, r¢)du. 

As we have seen, the integral of 

0T(Io( ¢, y)¢, 
¢ 

against dl~ I tends to 0 as T1 tends to infinity. Likewise, the integral of 

CEt3o(s~) 

against dl~ [ tends to zero. It follows that the difference 

CeBo(~) CeBo(s,r) 
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has a zero integral against d[([. Thus we arrive at the same conclusion as before. 

We now consider the case where two of the numbers 5(Xj) are zero. We fix a 

representative ~( in the class. Say 

~(Xl) = 6(X3) = 0. 

Then the integral of the truncated Eisenstein series is zero unless 

We have also 

and 

6(Xl,X3) : 1, 6(X2) = 1. 

X1 ¢X3 

~()~1, X2) = ~()C3, 12) = 0. 

Indeed if one of these relations is not satisfied then ~()O) = 6()C3) = 1. At this 

point we must pay attention to the choice of the measures. The space a has a 

metric invariant under ~(a); its dual has the corresponding metric. The Haar 

measure on ia* or a subspace is the one associated with the metric. In particular, 

we will denote by C the common length of the coroots. 

PROPOSITION 8.3 :  Under the above assumptions we have 

f Kx(u n)duO(nldn 

(97) -- 27rC -I 

(98) x I o ~-~x)fK Io(Xofl)¢(k)dkW(lo(Xof2)¢,x¢)d[([. 
~1+¢2= CEBPo ( v 

Here Ku = K n U(FA). If we interchange ~3 and X1 the above expression does 
not change, k-brthermore the following sum, taken over all such triples X, is finite: 

x ~ / 1 + , 2 = o  ~ f Io(x¢,fl)¢(k)dk W(lo(x¢,f2)¢,()d,(,. 

Proof: The proof of the last assertion follows again from the estimates on the 

Eisenstein series. To prove the first assertion we consider first the contribution 

of the representation ~r = X. It can be written as 

((1 + (2) ~ Io(~(¢, fa)¢(k)dk W(Io(X¢, ]2)¢, x¢)dl(I 
¢ 

[ e -(¢' +¢2)T1F(()d M + 
J 
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where F is a Schwartz function. The second term tends to 0 as T1 tends to 

infinity. For the first term we apply the limit formula 

lim [ eir<~K> -- e-iT<A'~> /< 
T---*+oo J < ~ ~ > F(()d[¢] = 2i~rl[Al1-1 F(¢)d[¢l, 

A , ( > = 0  

which is valid on any Euclidean space, for any Schwartz function F. We find this 

contribution is equal to (98) times 2~rC -1. 

Now we claim that  the terms corresponding to ~r = )/1 ® )/3 ® )C2 actually give 

the same contribution. Indeed this contribution can be written as 

e¢l rl _ e-(1T1 f . M(s~, ¢2w2)Io(~r¢, fl)¢(k)dk W(Io(~r¢,/~)¢)dl¢l 
J ¢ 

+ / e-¢~T~F(~)dl@ 

The second term tends to 0 and the first term tends to 2~rC-1 times 

~ = 0  ~ ¢  / M(s2,Tr,)lo(Tr¢, fl)¢(k)dk W(Io(~r,, f2)¢)d[,[. 

Now, by the functional equation of Eisenstein series we have 

W(Io(Tr(, f2)¢, lr~) = W(Io(s2%~¢, f2)M(s2, 7r¢)¢, s2~r~2¢ ). 

However, here s27r = )/. Hence our expression is also 

f¢1=0 ~¢ / Io(xs2¢, fl)M(s2, Tr()¢(k)dk W(lo(xs2;, f2)M(s2, ~ri)¢, Xs~,)d'~[. 

Consider the integrand, for a fixed ¢. Since the intertwining operator is unitary, 

M(s2, ~r¢)¢ is an orthonormal basis of the space 7-/°(X). Any basis will give the 

same integrand. Thus our expression is equal to 

[ Io(xs~¢, fl)C(k)dk W(I(xs~¢, f2)¢, xs~¢)dIil. Z 
J 

Using s2~ for new variable of integration we arrive at (98). 

The term corresponding to 7r = )/2 ® )/1 ® )/3 gives the same contribution. 

Exchanging )/1 and X3 we now compare the contributions of the representations 

r = X1 ® X2 ® )/3 and 7r' = X3 @ X2 @ X1. We recall that for ¢ • Bo(r)  we have 

] ] M(s0, 
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on the  line ~1 + ~2 = 0. We have also 

W(M(so, r¢)¢, soZr,o~ ) = W(¢, Iv). 

As before it follows that  the contribution of ~r and ~r' are the same. Thus in fact 

all the permutations of X give the same contribution. Since n(Ao) = 6 we are 

done. | 

Under the assumptions of the proposition, consider a ( E ia* such that 

~1 + ~2 = 0. For ¢ E 7-/°(X) set 

¢¢ (g) = ¢(g)e (¢+.o , - (9) ) .  

The subgroup Pu = Po n U is a parabolic subgroup of U. Then, for p E Pu, 

¢~(pg) = e(2p~,u ,Hpu (9)) 

It follows that 

= ---  ,(k)dk 

is a linear form on the space of the induced representation I00r¢) which is 

invariant under U(FA). Thus we may write the result of the previous 

proposition as 

(99) ~1+~,=0 E fK "~(x¢'f)cP(k)dkW(¢'x~)d]~l" 
CEBPo(×) v 

8.3 CONCLUDING REMARKS. We have thus reached the goal we were aiming 

at, namely an absolutely convergent formula of the form (13). Recall f is a 

K-finite function which is itself a convolution product of two K-finite functions. 

We have denoted by KG and Kcu,p the geometric and cuspidal kernels determined 

by f and found for the difference 

the following expression: 

~x ~ f E ~(I°Or"f)¢'n;)W(¢'~r¢)d](]" 
CEBo(*r) 

Here we sum over all cuspidal data  X. For each P we choose a suitable represen- 

tative (P, M, 7r) in the class of X. We sum only over those X such that  the induced 
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representation Ip(Tr) (which is itself induced from cuspidal representations in the 

terminology of [AC]) is Galois invariant. For such a X, we denote by E(., 7r¢) 

an appropriate invariant linear form on the space of the induced representation 

Ip(zc¢). The inner sum is over an orthonormal basis of the induced representation 

and the integral is over the space ia* or the one dimensional subspace defined by 

(1 + (2 = 0. Finally, the above expression is absolutely convergent in the sense 

that 

zi- 
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